Rumus.co.id – Pada kesempatan kali ini kita akan membahas perihal rumus deret aritmatika dan pada pembahasan sebelumnya kita telah membahas soal rumus geometri. Rumus aritmatika atau sanggup di sebut juga dengan barisan aritmatika di bagi menjadi beberapa macam yang pertama ialah rumus aritmatika bertingkat, sosial, sn, tingkat 2, aritmatika suku ke – n.
Pada barisan aritmatika, susunan dari bilangan nya di bentuk di antara satu bilangan ke bilangan yang berikut nya yang mempunyai perbedaan yang sama. Namun beda sendiri sanggup di artikan sebagai selisih antara 2 suku yang saling berurutan.
Dan jikalau suatu barisan mempunyai beda lebih dari nol ( b > 0 ) maka barisan aritmatika nya di sebut dengan barisan naik. Dan sebalik nya jikalau beda nya kurang dari nol ( b < 0 ) maka barisan aritmatika nya di sebut dengan barisan turunan, untuk lebih terperinci nya mari kita semua sanggup simak klarifikasi nya lebih lanjut pada pembahasan di bawah ini
Rumus Deret Aritmatika
Barisan dari aritmatika sanggup di artikan yang artinya ialah susunan bilangan yang real dan membentuk pola tertentu. Kemudian arti dari deret aritmatika sendiri iyalah sebuah penjumlahan dari barisan aritmatika. Dan ciri – ciri umum nya dari barisan aritmatika yaitu mempunyai beda yang sama dari satu bilangan ke bilangan yang berikut nya. Contoh dari barisan aritmatika ialah menyerupai di bawah ini :
2 , 10 , 18 , 26 , 34 , 42 …..dan seterus nya
Dan barisan di atas mempunyai nilai beda yaitu 8 ( b = 8 ). Selanjut nya akan kita bahas lebih dalam lagi soal rumus, barisan, dan deret dari aritmatika.
Barisan Aritmatika
Baris aritmatika => a a + b a + 2b … a + ( n – 1 ) b
Beda => +b +b
Pengertian dari barisan artimatika sendiri iyalah sebuah barisan dengan selisih antara 2 suku yang berurutan selalu tetap. Dan selisih antara 2 suku yang berurutan pada barisan aritmatika ini di sebut dengan beda ( b ). Dan rumus untuk memilih beda pada suatu barisan di aritmatika yaitu menyerupai pola di bawah ini.
b = Un – Un-1
beda nya ialah ( b ), suku ke – n nya ialah ( Un dan Un-1 )
lalu suku ke – n suatu barisan di aritmatika sanggup di tentukan dengan sebuah rumus. Dan rumus nya di gambarkan menyerupai pola di bawah ini.
Rumus Ke – n
Un = a + ( n – 1 ) b
Keterangan :
- a = suku pertama
- b = beda
- Un = suku ke – n
- n = bilangan bulat
Ternyata ada juga rumus yang sanggup kita gunakan untuk memilih suku tengah nya dari sebuah barisan aritmatika. Dan rumus ini di gambar kan menyerupai pola di bawah ini :
Rumus Aritmatika Suku Tengah
Ut = 1/2 ( U1 + Un )
Keterangan :
- a ( U1 ) = suku pertama
- Ut = suku tengah
- Un = suku ke – n
- n = bilangan bulat
Deret Aritmatika
Barisan aritmatika menyatakan bahwa susunan bilangan nya berurutan u1 , u2 , … , un dengan urutan tertentu. Sedangkan pada deret aritmatika, untuk pembahasannya ialah mengenai jumlah suku – suku berurutan tersebut. Untuk pola bentuk umum dari deret aritmetika ialah menyerupai di bawah ini.
U1 + U2 + U3 + … + Un
Dengan u1 , u2 , … , un merupakan barisan dari aritmetika.
Untuk rumus nya sanggup kalian lihat di bawah ini :
Rumus Penting Deret Aritmatika
Un = Sn – Sn – 1
Sn = n/2 ( a + Un )
Sn = n/2 ( 2a + ( n – 1 ) b )
Contoh Soal Aritmatika
- Di ketahui suatu barisan 5, -2, -9, -16,…., maka tentukanlah rumus suku ke – n nya?
Jawab :
Selisih 2 suku berurutan pada barisan 5, -2, -9, -16,… ialah tetap, yakni b = -7 sehingga barisan bilangan nya di sebut dengan barisan aritmatika.
Rumus suku ke – n barisan aritmatika tersebut ialah :
Un = a + ( n – 1 ) b
Un = 5 + ( n – 1 ) ( -7 )
Un = 5 – 7n + 7
Un = 12 – 7n
Itulah klarifikasi lengkap perihal rumus barisan aritmatika dan deret aritmatika beserta pola soal dan cara penggunaan dari rumus nya baik itu barisan aritmatika maupun barisan aritmatika supaya bermanfaat…
Baca Juga :